Accepted papers

Oral presentations:


Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, Evan Shelhamer

Geoffrey Hinton, Oriol Vinyals, Jeff Dean

Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou Zhang, Zhuowen Tu



Posters, morning session (11:30-14:45):

Unsupervised Feature Learning from Temporal Data (#3)
Ross Goroshin, Joan Bruna, Arthur Szlam, Jonathan Tompson, David Eigen, Yann LeCun

Autoencoder Trees (#5)
Ozan Irsoy, Ethem Alpaydin

Scheduled denoising autoencoders (#6)
Krzysztof Geras, Charles Sutton

Learning to Deblur (#8)
Christian Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf

A Winner-Take-All Method for Training Sparse Convolutional Autoencoders (#10)
Alireza Makhzani, Brendan Frey

"Mental Rotation" by Optimizing Transforming Distance (#11)
Weiguang Ding, Graham Taylor

On Importance of Base Model Covariance for Annealing Gaussian RBMs (#12)
Taichi Kiwaki, Kazuyuki Aihara

Ultrasound Standard Plane Localization via Spatio-Temporal Feature Learning with Knowledge Transfer (#14)
Hao Chen, Dong Ni, Ling Wu, Sheng Li, Pheng Heng

Understanding Locally Competitive Networks (#15)
Rupesh Srivastava, Jonathan Masci, Faustino Gomez, Jurgen Schmidhuber

Unsupervised pre-training speeds up the search for good features: an analysis of a simplified model of neural network learning (#18)
Avraham Ruderman

Analyzing Feature Extraction by Contrastive Divergence Learning in RBMs (#19)
Ryo Karakida, Masato Okada, Shun-ichi Amari

Deep Tempering (#20)
Guillaume Desjardins, Heng Luo, Aaron Courville, Yoshua Bengio

Learning Word Representations with Hierarchical Sparse Coding (#21)
Dani Yogatama, Manaal Faruqui, Chris Dyer, Noah Smith

Deep Learning as an Opportunity in Virtual Screening (#23)
Thomas Unterthiner, Andreas Mayr, Günter Klambauer, Marvin Steijaert, Jörg Wegner, Hugo Ceulemans, Sepp Hochreiter

Revisit Long Short-Term Memory: An Optimization Perspective (#24)
Qi Lyu, J Zhu

Locally Scale-Invariant Convolutional Neural Networks (#26)
Angjoo Kanazawa, David Jacobs, Abhishek Sharma

Deep Exponential Families (#28)
Rajesh Ranganath, Linpeng Tang, Laurent Charlin, David Blei

Techniques for Learning Binary Stochastic Feedforward Neural Networks (#29)
Tapani Raiko, mathias Berglund, Guillaume Alain, Laurent Dinh

Inside-Outside Semantics: A Framework for Neural Models of Semantic Composition (#30)
Phong Le, Willem Zuidema

Deep Multi-Instance Transfer Learning (#32)
Dimitrios Kotzias, Misha Denil, Phil Blunsom, Nando De Freitas

Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models (#33)
Ryan Kiros, Ruslan Salakhutdinov, Richard Zemel

Retrofitting Word Vectors to Semantic Lexicons (#34)
Manaal Faruqui, Jesse Dodge, Sujay Jauhar, Chris Dyer, Eduard Hovy, Noah Smith

Deep Sequential Neural Network (#35)
Ludovic Denoyer, Patrick Gallinari

Holger Schwenk




Posters, afternoon session (17:00-18:30):

Deep Learning for Answer Sentence Selection (#36)
Lei Yu, Karl Moritz Hermann, Phil Blunsom, Stephen Pulman

Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition (#37)
Max Jaderberg, Karen Simonyan, Andrea Vedaldi, Andrew Zisserman

Learning Torque-Driven Manipulation Primitives with a Multilayer Neural Network (#39)
Sergey Levine, Pieter Abbeel

SimNets: A Generalization of Convolutional Networks (#41)
Nadav Cohen, Amnon Shashua

Phonetics embedding learning with side information (#44)
Gabriel Synnaeve, Thomas Schatz, Emmanuel Dupoux

End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results (#45)
Jan Chorowski, Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

BILBOWA: Fast Bilingual Distributed Representations without Word Alignments (#46)
Stephan Gouws, Yoshua Bengio, Greg Corrado

Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling (#47)
Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, Yoshua Bengio

Reweighted Wake-Sleep (#48)
Jorg Bornschein, Yoshua Bengio

Explain Images with Multimodal Recurrent Neural Networks (#51)
Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Alan Yuille

Rectified Factor Networks and Dropout (#53)
Djork-Arné Clevert, Thomas Unterthiner, Sepp Hochreiter

Towards Deep Neural Network Architectures Robust to Adversarials (#55)
Shixiang Gu, Luca Rigazio

Making Dropout Invariant to Transformations of Activation Functions and Inputs (#56)
Jimmy Ba, Hui Yuan Xiong, Brendan Frey

Aspect Specific Sentiment Analysis using Hierarchical Deep Learning (#58)
Himabindu Lakkaraju, Richard Socher, Chris Manning

Deep Directed Generative Autoencoders (#59)
Sherjil Ozair, Yoshua Bengio

Conditional Generative Adversarial Nets (#60)
Mehdi Mirza, Simon Osindero

Analyzing the Dynamics of Gated Auto-encoders (#61)
Daniel Im, Graham Taylor

Representation as a Service (#63)
Ouais Alsharif, Joelle Pineau, philip bachman

Provable Methods for Training Neural Networks with Sparse Connectivity (#66)
Hanie Sedghi, Anima Anandkumar

Trust Region Policy Optimization (#67)
John D. Schulman, Philipp C. Moritz, Sergey Levine, Michael I. Jordan, Pieter Abbeel

Document Embedding with Paragraph Vectors (#68)
Andrew Dai, Christopher Olah, Quoc Le, Greg Corrado

Backprop-Free Auto-Encoders (#69)
Dong-Hyun Lee, Yoshua Bengio

Rate-Distortion Auto-Encoders (#73)
Luis Sanchez Giraldo, Jose Principe
Comments